Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells
نویسندگان
چکیده
Glucose transport in adipose cells is regulated by changing the distribution of glucose transporter 4 (GLUT4) between the cell interior and the plasma membrane (PM). Insulin shifts this distribution by augmenting the rate of exocytosis of specialized GLUT4 vesicles. We applied time-lapse total internal reflection fluorescence microscopy to dissect intermediates of this GLUT4 translocation in rat adipose cells in primary culture. Without insulin, GLUT4 vesicles rapidly moved along a microtubule network covering the entire PM, periodically stopping, most often just briefly, by loosely tethering to the PM. Insulin halted this traffic by tightly tethering vesicles to the PM where they formed clusters and slowly fused to the PM. This slow release of GLUT4 determined the overall increase of the PM GLUT4. Thus, insulin initially recruits GLUT4 sequestered in mobile vesicles near the PM. It is likely that the primary mechanism of insulin action in GLUT4 translocation is to stimulate tethering and fusion of trafficking vesicles to specific fusion sites in the PM.
منابع مشابه
Impaired Tethering and Fusion of GLUT4 Vesicles in Insulin-Resistant Human Adipose Cells
Systemic glucose homeostasis is profoundly influenced by adipose cell function. Here we investigated GLUT4 dynamics in living adipose cells from human subjects with varying BMI and insulin sensitivity index (Si) values. Cells were transfected with hemagglutinin (HA)-GLUT4-green fluorescent protein (GFP)/mCherry (red fluorescence), and were imaged live using total internal reflection fluorescenc...
متن کاملMyo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associ...
متن کاملPhosphatidylinositol 4-kinase, but not phosphatidylinositol 3-kinase, is present in GLUT4-containing vesicles isolated from rat skeletal muscle.
Insulin stimulates the rate of glucose transport into muscle and adipose cells by translocation of glucose transporter (GLUT4)-containing vesicles from an intracellular storage pool to the surface membrane. This event is mediated through the insulin receptor substrates (IRSs), which in turn activate phosphatidylinositol (PI) 3-kinase isoforms. It has been suggested that insulin causes attachmen...
متن کاملGLUT4 trafficking in insulin-stimulated rat adipose cells: evidence that heterotrimeric GTP-binding proteins regulate the fusion of docked GLUT4-containing vesicles.
Agents that activate the G-protein G(i) (e.g. adenosine) increase, and agents that activate G(s) [e.g. isoprenaline (isoproterenol)] decrease, steady-state insulin-stimulated glucose transport activity and cell-surface GLUT4 in isolated rat adipose cells without changing plasma membrane GLUT4 content. Here we have further examined the effects of R(s)G(s) and R(i)G(i) ligands (in which R(s) and ...
متن کاملRole of clusters in insulin-regulated GLUT4 trafficking in adipose cells: A new paradigm?
Insulin stimulates glucose transport in muscle and adipose cells by stimulating translocation of glucose transporter 4 (GLUT4) to the plasma membrane. In a recent Cell Metabolism paper, Stenkula et al. found that insulin controls the spatial distribution of GLUT4 on the surface of isolated adipose cells through regulation of their post-fusion dispersal. The presence of GLUT4 in plasma membrane-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 169 شماره
صفحات -
تاریخ انتشار 2005